

Übersicht

11.1: Grundlegende Phänomene chemischer Reaktionen

- 1. UE: Energetik Was treibt chemische Reaktionen an?
- 2. UE: Kinetik Geschwindigkeit chemischer Reaktionen
- 3. UE: Chemische Reaktionen im Gleichgewicht

11.2: Donator-Akzeptor-Reaktionen

- 4. UE: Protolysereaktionen in Alltag und Technik
- 5. UE. Elektrochemie in Alltag und Technik

12.1: Vom Rohstoff zum Syntheseprodukt

- 6. UE: Erdöl- zum Verbrennen zu schade
- 7. UE: Vom Alkan zum Aromastoff Vielfalt organischer Reaktionen
- 8. UE: Aromaten von Sonnencremes und TNT

Kursthema 12.2: Organische Makromoleküle

- 9. UE: Kunststoffe im Alltag
- 10. UE: Bausteine des Lebens (Universallebensmittel Milch; Von der Rübe zum Zucker)

Jahrgang 11.1 – Grundlegende Phänomene chemischer Reaktionen

1. UE: Energetik - Was treibt chemische Reaktionen an?

Vorgaben aus dem KC (Basiskonzept Energie)

Fachwissen	Erkenntnisgewinnung	Kommunikation	Bewertung
- beschreiben die innere Energie eines stofflichen Systems als Summe aus Kernenergie, chemischer Energie und thermischer Energie dieses Systems		- übersetzen die Alltagsbegriffe Energiequelle, Wärmeenergie, verbrauchte Energie und Energieverlust in Fachsprache	- reflektieren die Unschärfe von im Alltag verwendeten energetischen Begriffen
nennen den ersten Haupt- satz der Thermodynamik beschreiben die Enthalpie- änderung als ausgetauschte Wärme bei konstantem Druck	- ermitteln Reaktionsenthalpien kalorimetrisch		- nutzen ihre Kenntnisse zur Enthalpieänderung ausgewählter Alltags- und Technikprozesse
- nennen die Definition der Standard- Bildungsenthalpie	- nutzen tabellierte Daten zur Berechnung von Standard- Reaktionsenthalpien aus Standard-Bildungsenthalpien.	 stellen die Enthalpieänderungen in einem Enthalpiediagamm dar interpretieren Enthalpiediagramme 	 beurteilen die Energieeffizienz ausgewählter Prozesse ihrer Lebenswelt. bewerten die gesellschaftliche Relevanz verschiedener Energieträger
- beschreiben die Aktivierungsenergie als Energiedifferenz zwischen Ausgangszustand und Übergangszustand	- zeichnen Energiediagramme	- stellen die Aktivierungsenergie als Energiedifferenz zwischen Ausgangszustand und Übergangszustand dar - stellen die Wirkung eines	
- beschreiben den Einfluss eines Katalysators auf die Aktivierungsenergie	- nutzen die Modellvorstellung des Übergangszustands zur Beschreibung der Katalysatorwirkung	Katalysators in einem Energiediagramm dar	- beurteilen den Einsatz von Katalysatoren in technischen Prozessen

Schroedel-Vorschlag: UE Was treibt chemische Reaktionen an?

Fachinhalte	prozessbezogene KB	Hinweise	Seiten in Chemie heute S II (10652)
Was ist Energie? Energieumwandlung – Energieerhaltung (1. Hauptsatz der Thermodynamik) Systembegriff	Energiebegriff in Alltags und Fachsprache (K, BW)	innere Energie eines Stoffes als Summe aus Kernenergie, chemischer Energie und thermischer Energie	124, 125
Wirkungsgrad	Beurteilung der Energieeffizienz (BW)	Beurteilung verschiedener Energieträger (BW)	124, 125 (A 125.2), 274
Unterscheidung Enthalpie / Innere Energie	V: Kalorimetrische Bestimmung von Reaktionsenthalpien (FM, BW)	Messen des Brennwerts von Lebensmitteln und Fehleranalyse durch Vergleich mit Literaturdaten (FM, BW)	126, 127, 130, 131
Enthalpiediagramme; Aktivierungsenergie als Energiedifferenz zwischen Ausgangszustand und Übergangszustand	Aufstellen und interpretieren von Enthalpiediagrammen (K); Theorie des Übergangszustandes (FM); Darstellen der Katalysatorwirkung im Energiediagramm (K)		86, 88-91, 128, 129, 283
Von den Standard- Bildungsenthalpien zur Reaktionsenthalpie	Arbeit mit Tabellenwerken (FM)		127 bis 129

Nicht explizit gefordert: Satz von Hess, Born-Haber-Kreisprozess, Zusammenhang ΔG , K und ΔE , Lösungsenthalpien, Gitterenthalpie, Hydratationsenthalpie

2. UE: Kinetik - Geschwindigkeit chemischer Reaktionen

Vorgaben aus dem KC (Basiskonzept Kinetik und chemisches Gleichgewicht)

Fachwissen/	Erkenntnisgewinnung/	Kommunikation	Bewertung/
Fachkenntnisse	Fachmethoden		Reflexion
- definieren den Begriff der	- planen geeignete	- vergleichen den	- erkennen und beschreiben
Reaktionsgeschwindigkeit als	Experimente zur Überprüfung	Geschwindigkeitsbegriff in	die Bedeutung
Änderung der Konzentration	von Hypothesen zum Einfluss	Alltags- und Fachsprache	unterschiedlicher
pro Zeiteinheit.	von Faktoren auf die		Reaktionsgeschwindigkeiten
	Reaktionsgeschwindigkeit und	- recherchieren zu	alltäglicher Prozesse.
- beschreiben die	führen diese durch	technischen Verfahren in	
Abhängigkeit der		unterschiedlichen Quellen und	- beurteilen die Möglichkeiten
Reaktionsgeschwindigkeit von		präsentieren ihre Ergebnisse.	der Steuerung von
Temperatur, Druck,			chemischen Reaktionen in
Konzentration und			technischen Prozessen
Katalysatoren.			

Schroedel-Vorschlag: UE Geschwindigkeit chemischer Reaktionen

Fachinhalte	prozessbezogene KB	Hinweise	Seiten in Chemie heute S II (10652)
Definition: $v = \Delta c/\Delta t$	Geschwindigkeitsbegriff im Alltag (K, BW)	Phänomenologischer Einstieg: Reaktionen im Alltag verlaufen unterschiedlich schnell	78
	V: Messung von Reaktionsgeschwindigkeiten (FM); Planen geeigneter Versuche (FM, BW); Bestimmung von v über c-t-Diagramme	Differenzierung: Momentangeschwindigkeit, Durchschnittsgeschwindigkeit; Mathematisierung: Steigungen von Tangenten und Sekanten	79, 83, 85
Abhängigkeiten der Reaktionsgeschwindigkeit von Temperatur, Druck, Konzentration und Zerteilungsgrad	V: Planen und Durchführen geeigneter Versuche (FM, BW)	Geschwindigkeitsgleichung, Geschwindigkeitskonstante, Veranschaulichung mithilfe der Stoßtheorie; Simulationen mit einer Tabellenkalkulation; Bezug zur RGT-Regel	80, 81, 85 – 87

Auffällig ist die deutliche Reduktion im Grad der Mathematisierung. Der Computereinsatz wird nicht explizit genannt, jedoch im Vorwort generell ausdrücklich erwünscht.

Nicht explizit gefordert: Photometrie, Konduktometrie, Gasvolumetrie, Reaktionsordnung, Halbwertszeit, Arrheniusgleichung, Differenzierung in homogene und heterogene Katalyse, enzymatische Katalyse, Differenzierung zwischen E_A und E_{min}, Boltzmann-Energieverteilung

3. UE: Chemische Reaktionen im Gleichgewicht

Vorgaben aus dem KC

Fachwissen	Erkenntnisgewinnung	Kommunikation	Bewertung
- beschreiben das chemische Gleichgewicht auf Stoff- und Teilchenebene	- leiten aus Versuchsdaten Kennzeichen des chemischen Gleichgewichts ab - leiten anhand eines Modellversuchs Aussagen zum chemischen Gleichgewicht ab	- diskutieren die Übertragbarkeit der Modellvorstellung	
- beschreiben, dass Katalysatoren die Einstellung des chemischen Gleichgewichts beschleunigen - wenden das Prinzip von Le Chatelier an		- recherchieren zu Katalysatoren in technischen Prozessen	
- formulieren das Massenwirkungsgesetz - können anhand der Gleichgewichtskonstanten Aussagen zur Lage des Gleichgewichts machen		- argumentieren mithilfe des Massenwirkungsgesetzes.	- beurteilen die Bedeutung der Beeinflussung von Gleichgewichten in der chemischen Industrie und in der Natur

Schroedel-Vorschlag

Fachinhalte	prozessbezogene KB	Hinweise	Seiten in Chemie
Tacininanc	prozessoczogene KB	Timweise	heute S II (10652)
Umkehrbarkeit als Phänomen, dynamisches Gleichgewicht	V: Verknüpfung von Real- und Modellexperimenten (FM), Übertragbarkeit von Modellversuchen	Bildgeschichte: "Holzapfelkrieg"; Stechheberversuch	98, 99
Verschiebung des GG durch Temperatur, Druck und Konzentration, Anwendung von Le Chatelier		NO ₂ /N ₂ O ₄ -GG,	100 – 104
Wirkungsweise von Katalysatoren	Recherche zu Katalysatoren in technischen Prozessen; Präsentation der Ergebnisse (K); Beurteilung der Steuerung chemischer Reaktionen (BW) und der Gleichgewichtsreaktionen in Natur und Technik; Fachsprachliche Umsetzung von Flussdiagrammen technischer Prozesse (K)	Abgaskatalysator, Haber-Bosch-Verfahren Anwendungen HCO ₃ -/CO ₃ ²⁻ -GG, Höhenkrankheit	90-92,100–104, 114, 115
Gleichgewichtskonstante und Massenwirkungsgesetz; qualitativer Zusammenhang K <> Gleichgewichtslage		Experimentelle Ermittlung von K, Ester-gleichgewicht	106 – 108

Nicht explizit gefordert: Temperaturabhängigkeit von K, K_L und Löslichkeitsgleichgewichte, Komplexgleichgewichte (Stabilitätskonstante), Phasengleichgewichte (Destillation, Extraktion...), Zusammenhang zwischen der Reaktionsenthalpie und der Temperaturabhängigkeit von K, Bestimmung von K aus Standardpotenzialen, Ammoniaksynthese, Schwefelsäureherstellung

<u>Jahrgang 11.2 – Donator-Akzeptor-Reaktionen</u>

4. UE: Protolysereaktionen in Alltag und Technik

Vorgaben aus dem KC

	Erkenntnisgewinnung	Kommunikation	Bewertung
- erläutern die Säure-Base- Theorie nach Brönsted.	- messen pH-Werte	- stellen Protolysegleichungen	- reflektieren den historischen Weg der Entwicklung des Säure- Base-Begriffs bis
- stellen korrespondierende Säure-Base-Paare auf.	verschiedener wässriger Lösungen. - messen pH-Werte von	dar	Brönsted wenden ihre Kenntnisse über Säuren und Basen in Alltags-,
- verwenden die Begriffe Hydronium/Oxonium-Ion.	Produkten aus dem Alltag ermitteln experimentell die Säurestärke einprotoniger	- recherchieren zu Säuren und Basen in Alltags-, Technik-	Technik- und Umweltbereichen an beurteilen und bewerten den
- erklären die Neutralisationsreaktion	Säuren wenden ihre Kenntnisse zu einprotonigen Säuren auf mehrprotonige Säuren an.	und Umweltbereichen und präsentieren ihre Ergebnisse	Einsatz und das Auftreten von Säuren und Basen in Alltags-, Technik- und Umweltbereichen.
- differenzieren starke und schwache Säuren bzw. Basen anhand der pKs-und pK _B - Werte	- ermitteln titrimetrisch die Konzentration verschiedener Säure- Base-Lösungen nehmen Titrationskurven einprotoniger Säuren auf erklären qualitativ den Kurvenverlauf.	- präsentieren und diskutieren Titrationskurven	
 beschreiben die Säurekonstante als spezielle Gleichgewichtskonstante. erklären die Bedeutung des pKsWertes. 	- lesen aus Tabellen die Säure und Basestärke ab nutzen Tabellen zur Vorhersage von Säure-Base-Reaktionen berechnen pH-Werte starker und schwacher einprotoniger Säuren.	- wählen aussagekräftige Informationen aus argumentieren sachlogisch unter Verwendung der Tabellenwerte.	
- beschreiben die Autoprotolyse des Wassers als Gleichgewichtsreaktion	- • erkennen den Zusammenhang zwischen pH- Wert-Änderung und Konzentrationsänderung		
 erklären den Zusammenhang zwischen der Autoprotolyse des Wassers und dem pH-Wert nennen die Definition des pH-Werts. 		- recherchieren pH-Wert- Angaben im Alltag.	- reflektieren die Bedeutung von pH-Wert-Angaben in ihrem Alltag schätzen anhand des pH-Werts das Gefahrenpotenzial von wässrigen Lösungen ab beurteilen exemplarisch die physiologische Bedeutung von sauren und alkalischen
- beschreiben die Funktion von Säure-Base-Indikatoren	nutzen Tabellen zur Auswahl eines geeigneten Indikators.	- stellen Daten in geeigneter Form dar	Systemen erkennen und beschreiben die Bedeutung maßanalytischer Verfahren.
 deuten qualitativ Puffersysteme mit der Säure- Base-Theorie nach Brönsted beschreiben Puffersysteme 	- ermitteln die Funktionsweise von Puffern im Experiment	- recherchieren exemplarisch zu Puffergleichgewichten in Umwelt und biologischen Systemen und präsentieren ihre Ergebnisse.	- nutzen ihre Kenntnisse über Puffergleichgewichte zur Erklärung von Beispielen aus Umwelt und biologischen Systemen.

Schroedel-Vorschlag

Fachinhalte	prozessbezogene KB	Hinweise	Seiten in Chemie heute S II (10652)
Säure-Base-Theorie nach Brönsted Korrespondierende Säure/Base-Paare, Ampholyte	Reflexion der Entwicklung des Säure/Base-Begriffs (BW); Recherche zu Säuren und Basen in Alltag, Technik und Umweltbereichen (K), Beurteilung der Verwendung von Säuren und Basen im Alltag und Technik	Betonung der Teilchenebene: OH - Ion als Brönsted-Base, nicht der Stoff Natriumhydroxid Säuren als Konservierungsstoffe	141, 144, 145, 142- 143, 147
Protolysereaktionen als GG-Reaktionen, Hydronium-Ionen, Autoprotolyse und pH- Wert, pH-Skala	Konzentrationsberechnungen mithilfe des Ionenprodukts des Wassers (FM), Zusammenhang zwischen pH-Wert und Konzentration der Hydronium-Ionen (FM), Recherche zu pH-Wert-Angaben im Alltag (K) mit Abschätzung des Gefahrenpotenzials von wässrigen Lösungen (BW), V: Messen von pH-Werten von Lösungen und Alltagsprodukten (FM),	Achtung: Mathematische Kenntnisse zum Logarithmus müssen ggf. gelegt werden. Das Beispiel der Gefahrstoffeinstufung einer 2 molaren Salzsäure und einer 2 molaren Natronlauge zeigt, dass die Konzentration nicht immer geeignetes Kriterium für die Gefahrstoffeinstufung darstellt.	146 – 147
Stärke von Säuren: K _s als Sonderform der Gleichgewichtskonstante, Bedeutung des pK _S - Wertes;	Formulierung von Protolysegleichungen (FM), V: Experimentelle Bestimmung des pK _S -Wertes einer einprotonigen Säure aus dem pH-Wert (FM), Arbeiten mit Tabellenwerken (FM) und nutzen pK _s / pK _B -Werte zur Vorhersage von Säure/Base- Reaktionen (FM, K),		148-149 154 V 2
Differenzierung von starken und schwachen Säuren mithilfe der pK _s - und pK _B -Werte; Neutralisationsreaktion als Protolyse	Berechnung der pH-Werte starker und schwacher <u>einprotoniger</u> Säuren	Die exakte Berechnung des pH-Wertes durch Lösen einer quadratischen Gleichung ist nicht gefordert.	150-151
Säure/Base-Titration, Funktion von Säure/Base- Indikatoren	Arbeiten mit Tabellenwerken zur Auswahl geeigneter Indikatoren (FM), V: Durchführung von Titrationen zur Konzentrationsbestimmung verschiedener saurer und alkalischer Lösungen (FM), Berechnung der Stoffmengen-konzentration (FM), Aufnahme von Titrationskurven für einpro-tonige Säuren und qualitative Erklärung des Kurvenverlaufs (FM), V: Erstellen von Titrations-kurven sowie Präsentation und Diskussion (K), Bedeutung der Maßanalyse (BW)	Keine Berechnungen für gA-Kurse, wohl aber für eA-Kurse. Unsicher bleibt, ob die Titration potentiometrisch oder konduktometrisch erfolgen soll. Im Zweifelsfall sollte man beide Methoden durchführen und auswerten lassen.	156-159
Beschreibung von Puffersystemen	qualitativer Nachweis der Pufferwirkung im Experiment (FM), Recherche zu Puffersystemen in der Umwelt und in biologischen Systemen (K), Ableitung der Bedeutung von Puffersystemen (BW)	Herstellen einer Pufferlösung, Blutpuffer, Bestimmung der Säuren- und Basenkapazität verschiedener Trinkwässer	160-163

Gestrichene Inhalte: Protolyse wässriger Salzlösungen, Konduktometrie, Potentiometrie

5. UE: Elektrochemie in Alltag und Technik

Vorgaben aus dem KC

Fachwissen	Erkenntnisgewinnung	Kommunikation	Bewertung
 erläutern Redoxreaktionen als Elektronenübertragungsreaktionen. beschreiben mithilfe der Oxidationszahlen korrespondierende Redoxpaare. wenden ihre Kenntnisse zu Redoxreaktionen auf Alkanole und ihre Oxidationsprodukte an. 	- planen Experimente zur Aufstellung der Redoxreihe der Metalle und führen diese durch	- stellen Redoxgleichungen in Form von Teil- und Gesamtgleichungen dar. - wenden Fachbegriffe zur Redoxreaktion an.	- reflektieren die historische Entwicklung des Oxidationsbegriffs. - erkennen und beschreiben die Bedeutung von Redox- reaktionen im Alltag.
- erläutern den Bau von galvanischen Zellen. - erläutern die Funktionsweise von galvanischen Zellen.	- messen die Spannung unterschiedlicher galvanischer Zellen planen Experimente zum Bau funktionsfähiger galvanischer Zellen und führen diese durch.	- stellen galvanische Zellen in Form von Skizzen dar.	
 - beschreiben die elektro- chemische Doppelschicht als Redoxgleichgewicht. - beschreiben die galvanische Zelle als Kopplung zweier Redoxgleichgewichte. 		- stellen die elektrochemische Doppelschicht als Modellzeichnung dar.	
- nennen die Definition und die Bedeutung des Standard- Potenzials.	- lesen aus Tabellen die Standard-Potenziale ab. - nutzen Tabellen zur Vorhersage des Ablaufs von Redoxreaktionen. - berechnen die Spannung galvanischer Elemente unter Standardbedingung.	- wählen aussagekräftige Informationen aus. - argumentieren sachlogisch unter Verwendung der Tabellenwerte. - stellen die Potenzialdifferenzen in einer grafischen Übersicht dar.	
- nennen die prinzipiellen Unterschiede zwischen Batterien, Akkumulatoren und Brennstoffzellen	strukturieren ihr Wissen zu Batterien, Akkumulatoren und Brennstoffzellen. entwickeln Kriterien zur Beurteilung von technischen Systemen.	- recherchieren exemplarisch zu Batterien, Akkumulatoren und Brennstoffzellen und präsentieren ihre Ergebnisse.	- nutzen ihre Kenntnisse über elektrochemische Energiequellen zur Erklärung ausgewählter Alltags- und Technikprozesse. - beurteilen und bewerten den Einsatz elektrochemischer Energiequellen.
 erläutern den Bau von Elektrolysezellen. erläutern das Prinzip der Elektrolyse. deuten die Elektrolyse als Umkehrung des galvanischen Elements 	- führen Experimente zur Umkehrbarkeit der Reaktionen der galvanischen Zelle durch.	- stellen Elektrolysezellen in Form von Skizzen dar vergleichen Elektrolysezelle und galvanische Zelle erläutern Darstellungen zu technischen Anwendungen recherchieren zu Redox- reaktionen in Alltag und Technik und präsentieren ihre Ergebnisse	- nutzen ihre Kenntnisse über Redoxreaktionen zur Erklärung von Alltags- und Technikprozessen. - bewerten den Einsatz und das Auftreten von Redoxsystemen in Alltag und Technik.
 vergleichen Säure-Base- und Redoxreaktionen. erfassen, dass Donator-Akzeptor- Reaktionen chemische Gleichgewichte sind. 			
 beschreiben den Aufbau der Standard-Wasserstoffelektrode 			

Schroedel-Vorschlag

Fachinhalte	prozessbezogene KB	Hinweise	Seiten in Chemie heute
Redoxreaktionen als Elektronenübertragungsreaktion, Redoxpaare	Historische Entwicklung des Redoxbegriffs (B), V: Planung und Durchführung von Versuchen zur Red- oxreihe der Metalle (FM)	Alltagskontexte zu Redoxreaktionen herstellen Herausstellen des Donator/Akzeptor-Prinzips	S II (10652) 170, 171
Oxidationszahlen und deren Veränderung bei chemischen Reaktionen	Aufstellen von Redoxgleichungen über Teilgleichungen (K);	Oxidationszahl als formale Ladung; Abwasserreinigung als Anwendungsbeispiel	172 – 177 179
Aufbau und Funktion galvanischer Zellen, elektrochemische Spannungsreihe, Zelldiagramm	Skizzierung galvanischer Zellen (K), modellhafte Darstellung der elektrochemischen Doppelschicht (K), V: Planung und Durchführung von Versuchen zur Spannungsreihe (FM), Messen der Zellspannungen galvanischer Zellen (FM),	elektrochemische Doppelschicht als Redoxgleichgewicht; galvanische Zelle als Kopplung zweier Redoxgleichgewichte	181, 184
Standard-Wasserstoffhalbzelle und Standardpotenzial	Bedeutung der Standardisierung (BW), Arbeiten mit Standardpotenzialen zur Vorhersage des Reaktionsverlaufs (FM), Berechnung der Zellspannungen unter Standardbedingungen (FM), grafische Darstellung von Potenzialdifferenzen (K)	Arbeiten mit Tabellenwerken; Einsatz von Simulationsprogrammen	182, 185
Bau und Funktion von Elektrolysezellen; Elektrolyse als Umkehrung der galvanischen Zelle	V: Experimente zur Umkehrbarkeit der Reaktionen in der galvanischen Zelle (FM); Vergleich Elektrolysezelle, galvanische Zelle (K), Skizzierung einer Elektrolysezelle (K),	Elektrolyse von Zinkiodid und Messung der Spannung; Vergleich der Polung und der Stromflussrichtung; Begriffe Zersetzungsspannung und Abscheidungspotenzial	198 – 200
Technische Elektrolysen	Recherche und Präsentation zu technischen Anwendungen von Elektrolysen (K), Bewertung von Redoxsystemen in Alltag und Technik (B)	Chloralkali-Elektrolyse oder Aluminiumgewinnung;	206 – 212
Elektrochemische Energieträger (Bau, Funktion und Unterschiede von Batterien, Akkumulatoren, Brennstoffzellen)	Recherche und Präsentation zu den elektrochemischen Energiequellen (K), Entwicklung von Beurteilungskriterien für technische Systeme (FM), Beurteilung der Einsatzmöglichkeiten elektrochemischer Energiequellen (BW)	Freiarbeit zu elektrochemischen Energiequellen	220 – 226

Nicht explizit genannt: Nernst-Gleichung für Nichtmetall-Halbzellen, Redoxtitration, Zersetzungsspannung, Überspannung, Polarisation, Faraday-Gesetze, Korrosion, Korrosionsschutz, Chlor-Alkali-Elektrolyse

Jahrgang 12.1 - Vom Rohstoff zum Syntheseprodukt

<u>6. UE: Erdöl – zum Verbrennen zu schade</u>

Vorgaben aus dem KC

Fachwissen	Erkenntnisgewinnung	Kommunikation	Bewertung
unterscheiden anorganische und organische Stoffe. unterscheiden die folgenden anorganischen Stoffe: Metalle, Nichtmetalle, Ionensubstan- zen, Molekülsubstanzen	ordnen eine Verbindung begründet einer Stoffgruppe zu. nutzen eine geeignete Formelschreibweise.	recherchieren Namen und Verbindungen in Tafelwerken. vergleichen die Aussagen verschiedener Formelschreibweisen	erkennen und beschreiben die gesellschaftliche Relevanz und Bedeutung von Stoffen in ihrer Lebenswelt.
beschreiben die stoffliche Zusammensetzung von Erdöl und Erdgas. beschreiben das Prinzip der Gaschromatografie.	wenden ihre Kenntnisse zur Stofftrennung auf die fraktionierte Destillation an. nutzen die Gaschromato- grafie zum Erkennen von Stoffgemischen.	erläutern schematische Darstellungen technischer Prozesse.	erörtern und bewerten Verfahren zur Nutzung und Verarbeitung ausgewählter Naturstoffe vor dem Hintergrund knapper werdender Ressourcen.

Schroedel-Vorschlag

Fachinhalte	prozessbezogene KB	Hinweise	Seiten in Chemie heute S II (10652)
Zusammensetzung von Erdöl und Erdgas Unterscheidung anorganischer und organischer Stoffe, Einteilung anorganischer Stoffe in Metalle, Nichtmetalle, Ionen- und Molekülverbindungen	Beschreibung der Aufbereitung von Erdöl durch fraktionierte Destillation (Erläuterung schematischer Darstellungen technischer Prozesse) (FM, K), Recherche von Verbindungsnamen (K), begründete Zuordnung von Stoffen zu Stoffgruppen (FM) und Nutzung geeigneter Formelschreibweisen (FM, K)	Filmanalyse Differenzierung zwischen Molekül- und Verhältnisformel	292-294 10
Prinzip der Gaschromatografie	V: Nutzung der Gaschromatografie zur Erkennung von Gemischen (FM)	Untersuchung der Reinheit von Biogas	254-255; 291 V 1
Klimawandel und Treibhauseffekt	Beurteilung wirtschaftlicher Aspekte und Stoffkreisläufe unter dem Dreieck der Nachhaltigkeit (Ökonomie, Ökologie, Soziales); Beurteilung von Handlungsstrategien (BW); Sensibilisierung für umweltgerechtes Handeln im Alltag		295-297

Nicht explizit genannt: Cracken, Klimawandel und Treibhauseffekt

7. UE: Vom Alkan zum Aromastoff – Vielfalt organischer Reaktionen

Vorgaben aus dem KC

Fachwissen	Erkenntnisgewinnung	Kommunikation	Bewertung
beschreiben die Molekülstruktur und die funktionellen Gruppen folgender Stoffklassen: Alkane, Alkene, Aromaten, Alkanole, Alkanale, Alkanone, Alkansäuren, Ester, Ether, Halogenkohlenwasserstoffe.	ordnen ausgewählte Stoff- klassen in Form homologer Reihen. wenden die IUPAC- Nomenklatur zur Benennung organischer Verbindungen an. nutzen geeignete Anschauungsmodelle zur Visualisierung der Struktur von Verbindungen.	unterscheiden Fachsprache und Alltagssprache bei der Benennung chemischer Verbindungen. diskutieren die Grenzen und Möglichkeiten der Anschauungsmodelle.	erkennen die Bedeutung der Fachsprache für Erkenntnisgewinnung und Kommunikation.
beschreiben das EPA-Modell. unterscheiden Einfach- und Mehrfachbindungen. unterscheiden die Konstitutionsisomerie und die cistrans- Isomerie.	nutzen das EPA-Modell zur Erklärung von Molekül- strukturen.		
erklären Stoffeigenschaften anhand ihrer Kenntnisse über zwischenmolekulare Wechselwirkungen. erklären induktive Effekte.	planen Experimente zur Ermittlung von Stoffeigenschaften und führen diese durch. nutzen ihre Kenntnisse zur Erklärung von Siedetemperaturen und Löslichkeiten. verwenden geeignete Formelschreibweisen zur Erklärung von Elektronenverschiebungen. nutzen induktive Effekte zur Erklärung der Stärke organischer Säuren.	stellen den Zusammenhang zwischen Molekülstruktur und Stoffeigenschaft fach- sprachlich dar. stellen die Elektronen- verschiebung in angemessener Fachsprache dar.	nutzen ihre Erkenntnisse zu zwischenmolekularen Wechselwirkungen zur Erklärung von Phänomenen in ihrer Lebenswelt.
beschreiben den Reaktionsmechanismus der radikalischen Substitution. beschreiben den Reaktionsmechanismus der elektrophilen Addition von symmetrischen Verbindungen. unterscheiden zwischen homolytischer und hetero- lytischer Bindungsspaltung beschreiben die Reaktion mit Brom als Nachweis für Doppelbindungen.	führen Experimente zur radikalischen Substitution durch. führen Experimente zur elektrophilen Addition durch. leiten die Reaktionsmechanismen aus experimentellen Daten ab. nutzen induktive Effekte zur Erklärung von Reaktionsmechanismen	versprachlichen mechanistische Darstellungsweisen. stellen die Aussagen eines Textes in Form eines Reaktionsmechanismus dar. analysieren Texte in Bezug auf die beschriebenen Reaktionen.	reflektieren mechanistische Denkweisen als wesentliches Prinzip der organischen Chemie.
unterscheiden radikalische, elektrophile und nucleophile Teilchen. unterscheiden die Reaktionstypen Substitution, Addition, Eliminierung und Kondensation - begründen anhand funktioneller Gruppen die Reaktionsmöglichkeiten organischer Moleküle. wenden ihre Kenntnisse zu Redoxreaktionen auf Alkanole und ihre Oxidationsprodukte an.	planen Experimente für einen Syntheseweg zur Überführung einer Stoffklasse in eine andere. planen Experimente zur Identifizierung einer Stoffklasse und führen diese durch.	diskutieren die Reaktionsmöglichkeiten funktioneller Gruppen. stellen einen Syntheseweg einer organischen Verbindung dar. stellen Flussdiagramme technischer Prozesse fachsprachlich dar.	beurteilen und bewerten die gesellschaftliche Bedeutung eines ausgewählten organischen Synthesewegs. reflektieren die gesundheitlichen Risiken beim Einsatz organischer Verbindungen. nutzen chemische Kenntnisse zur Erklärung der Produktlinie ausgewählter technischer Synthesen. beurteilen wirtschaftliche Aspekte und Stoffkreisläufe im - Sinne der Nachhaltigkeit.
beschreiben, dass bei chemischen Reaktionen unterschiedliche Reaktion- produkte entstehen können.	stellen Zusammenhänge zwischen den während der Reaktion konkurrierenden Teilchen und den Produkten her.	argumentieren sachlogisch und begründen schlüssig die entstehenden Produkte.	reflektieren die Bedeutung von Nebenreaktionen organischer Synthesewege.

Schroedel-Vorschlag

Eashinhalta	annanch ann ann VD	II:	Ca:4a :
Fachinhalte	prozessbezogene KB	Hinweise	Seiten in
			Chemie heute S
			II
			(10652)
Alkane, Alkene: EPA-	Erstellen homologer Reihen und Anwenden	keine Differenzierung in σ-	276-279,
Modell,	der IUPAC-Nomenklatur (FM); Nutzung	und π -Bindung gefordert, da	281, 286-
Konstitutionsisomerie und	geeigneter Modelle zur Moleküldarstellung	das Orbitalmodell, das VB-	287
cis-trans-Isomerie; Einfach-	(FM); Anwendung des EPA-Modells;	Modell sowie das MO-	207
und Mehrfachbindungen	Diskussion der Grenzen von Modellen (K);	Modell nicht Inhalt des KC	
Erklärung von	Bedeutung der eindeutigen Nomenklatur	sind	
Stoffeigenschaften mithilfe	(Fachsprache) (BW)	Silid	
der Molekülstruktur sowie	V: Planung von Experimenten zur		
der Polarität von Bindungen	Untersuchung von Stoffeigenschaften (FM);		
	fachsprachlich saubere Anwendung der		
	Struktur-Eigenschaftsbeziehungen auf die		
	Siedetemperaturen und die Löslichkeit (FM,		
	K)		
Mechanismus der	V: Experimente zur S _R -Reaktion (FM);	Vernetzung mit dem BK	282-285
radikalischen Substitution,	Versprachlichung des Mechanismus (K);	Energie: Betrachtung von	
homolytische	Reflexion der Bedeutung von	Bindungsdissoziationsenergi	
Bindungsspaltung, Radikale,	Reaktionsmechanismen (BW); Analyse von	en	
Mehrfachsubstitution,	Texten und Darstellung von		
Ozonproblematik	Reaktionsmechanismen aus Texten (K);		
	Anwendung der IUPAC-Nomenklatur auf		
	Halogenalkane;		
	Aufstellen und Interpretation eines		
26.1.1.1	Energiediagramms (FM);		200.200
Mechanismus der	V: Experimente zur A _E -Reaktion (FM);	Durch den Vergleich der	288-289,
elektrophilen Addition,	Versprachlichung des Mechanismus (K);	beiden Reaktionen lassen	291
heterolytische	Reflexion der Bedeutung von	sich die Begriffspaare	
Bindungsspaltung,	Reaktionsmechanismen (BW); Analyse von	Substitution – Addition,	
elektrophile Teilchen; Induktionseffekte	Texten und Darstellung von Reaktionsmechanismen aus Texten (K);	Radikal – Elektrophil sowie	
V: Brom als Nachweis für	V: Durchführen von Nachweisreaktionen	Homolyse – Heterolyse ableiten.	
Doppelbindungen;	(FM); Diskussion über die Bedeutung von	abletten.	
Eliminierung nur als	Nachweisen (K), Vorhersage der		
Reaktionstyp;	entstehenden Produkte in Abhängigkeit von		
Konkurrenz zwischen	den Reaktionsbedingungen (K)		
reagierenden Teilchen			
Molekülstruktur und	Erstellen homologer Reihen und Anwenden	Die funktionellen Gruppen	301-336
funktionelle Gruppen von	der IUPAC-Nomenklatur (FM); Nutzung	und die daran anwendbaren	
organischen	geeigneter Modelle zur Moleküldarstellung	Struktur-	
Sauerstoffverbindungen	(FM); Anwendung des EPA-Modells;	Eigenschaftsbeziehungen	
(Alkanole, Alkanale,	Diskussion der Grenzen von Modellen (K);	stehen im Mittelpunkt der	
Alkanone, Ether,	Bedeutung der eindeutigen Nomenklatur	Betrachtungen.	
Carbonsäuren, Ester);	(Fachsprache) (BW)	Wichtig: KC nennt	
Oxidationszahlen;	V: Planung von Experimenten zur	Mechanismus der	
V: Fehling-Probe bei	Untersuchung von Stoffeigenschaften (FM);	säurekatalysierten	
reduzierend wirkenden	fachsprachlich saubere Anwendung der	Veresterung nicht; Ester	
organischen Stoffen;	Struktur-Eigenschaftsbeziehungen auf die	aber schon > Im Abi kann	
Induktive Effekte als	Siedetemperaturen und die Löslichkeit (FM,	der Mechanismus anhand	
Erklärung der Säurestärke	K); Bedeutung funktioneller Gruppen (FM)	von geeigneten Materialien	
organischer Säuren.	Beschreiben von Redoxreaktionen anhand	abgefragt werden.	
	organischer Moleküle (FM)		

Nicht explizit genannt: Elementaranalysen, Molmassenbestimmung, Alkine, Gesetz von Avogadro, ideales Gasgesetz, Orbitalmodell, VB-Modell, MO-Modell, optische Isomerie, Eliminierung

<u>Jahrgang 12.2 – Organische Makromoleküle</u>

8. UE: Kunststoffe im Alltag

Vorgaben aus dem KC

Fachwissen	Erkenntnisgewinnung	Kommunikation	Bewertung
teilen Kunststoffe in Duroplaste, Thermoplaste und Elastomere ein.	untersuchen experimentell die Eigenschaften von Kunststoffen.	recherchieren zu Anwendungsbereichen makromolekularer Stoffe und präsentieren ihre Ergebnisse.	beurteilen und bewerten den Einsatz von Kunststoffen im Alltag. beurteilen und bewerten wirtschaftliche Aspekte und Stoffkreisläufe im Sinne der Nachhaltigkeit.
beschreiben die Reaktionstypen Polymerisation und Polykondensation zur Bildung von Makromolekülen. beschreiben den Reaktionsmechanismus der radikalischen Polymerisation.	führen Experimente zur Polykondensation durch. nutzen ihre Kenntnisse zur Struktur von Makromolekülen zur Erklärung ihrer Stoffeigenschaften. nutzen geeignete Modelle zur Veranschaulichung von Reaktionsmechanismen.	diskutieren die Aussagekraft von Modellen.	

Schroedel-Vorschlag

Einteilung der Kunststoffe (Duroplaste, Thermoplaste, Elastomere)	v: Untersuchungen von Kunststoffen (FM) Recherche von	Arbeiten mit dem Kunststoffkoffer von Bayer; Knüpfen des Zusammenhangs	Seiten in Chemie heute S II (10652) 362 368, 370- 371, 375,
Recycling von Kunststoffen (thermisch, rohstofflich, werkstofflich)	Anwendungsbereichen für Kunststoffe (K) Beurteilung von Kunststoffen im Alltag (BW) Beurteilung des Kunststoffrecyclings unter Einbeziehung des Dreiecks der Nachhaltigkeit (BW)	zwischen Verarbeitungsart und Kunststoffart	382-382, 385, 386- 387
Reaktionen: Polykondensation und radikalische Polymerisation; Mechanismus der radikalischen Polymerisation; Unterscheidung reaktiver Teilchen	V: Polykondensation (FM), Darstellung der Struktur- Eigenschaftsbeziehungen bei Makromolekülen (FM); Nutzung geeigneter Modelle zur Veranschaulichung von Reaktionsmechanismen (FM), Beurteilung der Eignung von Modellen (BW), Darstellung des Syntheseweges einer organischen Verbindung (K)		363, 364- 368, 372-374

9. UE: Aromaten – von Sonnencremes und TNT

Vorgaben aus dem KC

Fachwissen	Erkenntnisgewinnung	Kommunikation	Bewertung
□ erklären die Mesomerie mithilfe von Grenzstrukturen in der Lewis- Schreibweise für das Benzolmolekül.	□ wenden das Mesomeriemodell zur Erklärung des aromatischen Zustands des Benzol- Moleküls an.	□ diskutieren die Grenzen und Möglichkeiten von Modellen.	

Schroedel-Vorschlag

Fachinhalte	prozessbezogene KB	Hinweise	Seiten in
			Chemie heute S
			II (10652)
Aromatizität, Hückel-	Anwendung des Mesomerie-	historische Betrachtung der	337-340;
Regel, Mesomerie,	Modells zur Erklärung des	Leistung von Kekulé; Vernetzung	342-343
Grenzstrukturen für das	aromatischen Zustandes (FM),	des BK Donator-Akzeptor durch	
Benzol-Molekül	Darstellung der	Protolyseeingeschaften von	
Mesomerieenergie des	Mesomerieenergie des Bezols in	Phenol und Anilin bzw.	
Benzols	einem Energiediagramm (K)	Redoxreaktionen der Diphenole;	
	Diskussion über Grenzen von	Es bietet sich an, das Thema	
	Modellen (K), Darstellung des	Aromaten und Kunststoffe am	
	Syntheseweges einer organischen	Beispiel der Epoxidharze	
	Verbindung (K)	(Bisphenol A) zu verknüpfen.	

Nicht explizit genannt: Elektrophile Substitution an Aromaten, Benzolderivate, Zweitsubstitution

10. UE: Bausteine des Lebens (Universallebensmittel Milch; Von der Rübe zum Zucker)

Vorgaben aus dem KC

Fachwissen	Erkenntnisgewinnung	Kommunikation	Bewertung
klassifizieren folgende Naturstoffe: Aminosäuren, Proteine, Kohlenhydrate (Glucose, Fructose, Saccharose, Stärke), Fette	untersuchen experimentell die Eigenschaften von Naturstoffen		
beschreiben die Fehling- Probe als Nachweise für reduzierend wirkende organische Verbindungen. beschreiben die lod-Stärke- Reaktion.	führen Nachweisreaktionen durch.	diskutieren die Aussagekraft von Nachweisreaktionen.	

Schroedel-Vorschlag

Fachinhalte	prozessbezogene KB	Hinweise	Seiten in Chemie
			heute S II (10652)
Klassifizierung von Proteinen,	V: Untersuchung der	Projekt: Zuckergewinnung	429-456
Kohlenhydraten und Fetten	Eigenschaften ausgewählter	Projekt: Isolierung und	
V: Fehling-Probe, Iod-Stärke-	Naturstoffe (FM);	Charakterisierung von Fetten	
Reaktion Molekülstruktur der	V: Nachweis funktioneller	(Iodzahl, Verseifungszahl)	
Aminosäuren	Gruppen durch spezifische		
	Nachweisreaktionen (FM),		
	Diskussion der Bedeutung		
	von Nachweisreaktionen (K)		
	fachsprachliche Darstellung		
	des Zusammenhangs		
	zwischen Molekülstrukturen		
	und Stoffeigenschaften (K)		